Know it – Wind Power Energy

Wind Power

Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electrical power,windmills for mechanical power, wind pumps for water pumping or drainage, or sails to propel ships. Large wind farms consist of hundreds of individual wind turbines which are connected to the electric power transmission network. Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation and uses little land. Offshore farms have less visual impact, but construction and maintenance costs are considerably higher. Small onshore wind farms provide electricity to isolated locations.

Wind Farms

A wind farm is a group of wind turbines in the same location used for production of electricity. A large wind farm may consist of several hundred individual wind turbines distributed over an extended area, but the land between the turbines may be used for agricultural or other purposes. A wind farm may also be located offshore.

Almost all large wind turbines have the same design — a horizontal axis wind turbine having an upwind rotor with three blades, attached to a nacelle on top of a tall tubular tower. In a wind farm, individual turbines are interconnected with a medium voltage (often 34.5 kV), power collection system and communications network. At a substation, this medium-voltage electric current is increased in voltage with a transformer for connection to the high voltage electric power transmission system.

Onshore windfarm

Offshore wind power refers to the construction of wind farms in large bodies of water to generate electricity. These installations can utilise the more frequent and powerful winds that are available in these locations and have less aesthetic impact on the landscape than land based projects. However, the construction and the maintenance costs are considerably higher.

Offshorewindpark Burbo Bank

Energy Storage

In general, hydroelectricity complements wind power very well. When the wind is blowing strongly, nearby hydroelectric plants can temporarily hold back their water, and when the wind drops they can rapidly increase production again giving a very even power supply. Pumped-storage hydroelectricity or other forms of grid energy storage can store energy developed by high-wind periods and release it when needed.The type of storage needed depends on the wind penetration level – low penetration requires daily storage, and high penetration requires both short and long term storage – as long as a month or more. Stored energy increases the economic value of wind energy since it can be shifted to displace higher cost generation during peak demand periods. The potential revenue from this arbitrage can offset the cost and losses of storage; the cost of storage may add 25% to the cost of any wind energy stored but it is not envisaged that this would apply to a large proportion of wind energy generated.

Enviromental Effect – Green Effect

Compared to the environmental impact of traditional energy sources, the environmental impact of wind power is relatively minor in terms of pollution. Wind power consumes no fuel, and emits no air pollution, unlike fossil fuel power sources. The energy consumed to manufacture and transport the materials used to build a wind power plant is equal to the new energy produced by the plant within a few months. While a wind farm may cover a large area of land, many land uses such as agriculture are compatible, with only small areas of turbine foundations and infrastructure made unavailable for use.

Top 10 Countries with Windpower Capacity

(India Stands 5th contributing to 6.5% of world total)

Country 2012
capacity (MW)
Windpower total capacity
(MW)
 % world total
China 12,960 75,324 26.7
United States 13,124 60,007 21.2
Germany 2,145 31,308 11.1
Spain 1,122 22,796 8.1
India 2,336 18,421 6.5
UK 1,897 8,845 3.0
Italy 1,273 8,144 2.9
France 757 7,564 2.7
Canada 935 6,200 2.2
Portugal 145 4,525 1.6
(rest of world) 6,737 39,853 14.1
World total 44,799 MW 282,587 MW 100%

Posted on May 17, 2013, in WIND and tagged , , , , , , , , , , . Bookmark the permalink. 1 Comment.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s